42,031 research outputs found

    On finite complete rewriting systems and large subsemigroups

    Get PDF
    Let SS be a semigroup and TT be a subsemigroup of finite index in SS (that is, the set S∖TS\setminus T is finite). The subsemigroup TT is also called a large subsemigroup of SS. It is well known that if TT has a finite complete rewriting system then so does SS. In this paper, we will prove the converse, that is, if SS has a finite complete rewriting system then so does TT. Our proof is purely combinatorial and also constructive.Comment: We have made major changes to the paper and simplified most of the proof

    Non-Langevin behaviour of the uncompensated magnetisation in nanoparticles of artificial ferritin

    Full text link
    The magnetic behaviour of nanoparticles of antiferromagnetic ferritin has been investigated by 57Fe Mossbauer absorption spectroscopy and magnetisation measurements, in the temperature range 2.5K-250K and with magnetic fields up to 7T. Samples containing nanoparticles with an average number of Fe atoms ranging from 400 to 2500 were studied. The value of the anisotropy energy per unit volume was determined and found to be in the range 3-6 10**5 ergs/cm3, which is a value typical for ferric oxides. By comparing the results of the two experimental methods at large field, we show that, contratry to what is currently assumed, the uncompensated magnetisation of the feritin cores in the superparamagnetic regime does not follow a Langevin law. For magnetic fields below the spin-flop field, we propose an approximate law for the field and temperature variation of the uncompensated magnetisation which has so far never been applied in antiferromagnetic systems. This approach should more generally hold for randomly oriented antiferro- magnetic nanoparticles systems with weak uncompensated moments.Comment: 11 pages, 11 figure

    Dynamics of Neural Networks with Continuous Attractors

    Full text link
    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption

    Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density

    Full text link
    We calculate the two-pion correlation function for an expanding hadron source with a finite baryon density. The space-time evolution of the source is described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT) radius is extracted after effects of collective expansion and multiple scattering on the HBT interferometry have been taken into account, using quantum probability amplitudes in a path-integral formalism. We find that this radius is substantially smaller than the HBT radius extracted from the freeze-out configuration.Comment: 4 pages, 2 figure
    • …
    corecore